The disappearance of the He-giant progenitor of the Type Ib SN iPTF13bvn and constraints on its companion

John J. Eldridge & Justyn R. Maund 2016, MNRAS, 461, L117 2016 Dec 1 김상철(Sang Chul KIM)

- Brightest objects in galaxies (M_V = $-14 \sim -22$) •
- **Typical types** No H lines (pop II) \rightarrow Type Ia

WD + Giant/MS/He * (Single Degenerate, SD)

WD + WD(Double Degenerate, DD)

SNe Ia (thermonuclear stellar explosion) (WD originated SNe) 백색왜성 기원 초신성

CC SNe

H lines (pop I) \rightarrow Type II

핵붕괴 초신성

http://dujs.dartmouth.edu/2008/05/type-ia-supernovae-properties-models-and-theories-of-their-progenitor-systems http://wwwmpa.mpa-garching.mpg.de/mpa/research/current research/hl2013-8/hl2013-8-en.html http://spiff.rit.edu/richmond/sdss/sn survey/sn survey.html

Ib

Ic

Figure 2. The detailed classification of SNe requires not only the identification of specific features in the early spectra, but also the analysis of the line profiles, luminosity and spectral evolutions

Host galaxy, NGC 5806

Reddening : E(B-V)=0.045 to 0.17 ± 0.03 mag

(Eldridge & Maund 16)

iPTF13bvn

NGC 5806 Explosion date : 2013 June 15.67;

SN position : $\alpha(J2000)=15^{h} 00^{m} 00.152^{s},$ $\delta(J2000)=+01^{\circ} 52' 53.17"$

 1σ , 3σ error circles

Progenitor candidate : F435W=25.80±0.12 mag F555W=25.80±0.11 mag F814W=25.88±0.24 mag

First detection of SN Ib/c progenitor!

Late-time Observations

- HST/WFC3 (Wide Field Camera 3) / UVIS (Ultraviolet-Visible channel)
- 2015 June 26 (+740 d post-explosion)
- F438W : 2×2680 s, F555W : 2860 + 2750 s

F438W=26.48±0.08 mag

F555W=26.33±0.05 mag

Late-time Observations

- HST/WFC3 (Wide Field Camera 3) / UVIS (Ultraviolet-Visible channel)
- 2015 June 26 (+740 d post-explosion)
- F438W : 2×2680 s, F555W : 2860 + 2750 s

 $F435W=25.80\pm0.12 \text{ mag} \rightarrow F438W=26.48\pm0.08 \text{ mag}$: 0.68 mag fainter

 $F555W=25.80\pm0.11 \text{ mag} \rightarrow F555W=26.33\pm0.05 \text{ mag} : 0.53 \text{ mag}$ fainter

→ Progenitor candidate was the progenitor! Now, the progenitor has disappeared!

Photometry

Pre-explosion	Post-explosion		
$-6.15 \leq M_{F435W} \leq -6.89$	$-5.47 \leq M_{F435W} \leq -6.21$		
$-6.1 \le M_{F555W} \le -6.71$	$-5.57 \leq M_{F555W} \leq -6.18$		

Table 1. Photometry of iPTF13bvn.

Date	Phase ^a (d)	<i>m</i> (<i>B</i> / <i>F</i> 438 <i>W</i>) (mag)	m(V/F555W) (mag)
2013/08/06	53.93	18.2	
2013/09/10	88.84	_1	17.8
2014/04/18	324	21.1	21.2
Expected	740	26.0	28.0
2015/06/26	740	26.5	26.3
Expected	1001	29.6	29.7

Note. ^{*a*}with respect to the explosion date 2013 June 15.67; Cao et al. (2013)

→ Progenitor decay rate prediction ~ observation results This flux arises from the SN itself!

Photometry

Date	Phase ^a (d)	<i>m</i> (<i>B</i> / <i>F</i> 438 <i>W</i>) (mag)	m(V/F555W) (mag)
2013/08/06	53.93	18.2	
2013/09/10	88.84		17.8
2014/04/18	324	21.1	21.2
Expected	740	26.0	28.0
2015/06/26	740	26.5	26.3
Expected	1001	29.6	29.7

Note. ^{*a*} with respect to the explosion date 2013 June 15.67; Cao et al. (2013)

→ Progenitor decay rate prediction ~ observation results This flux arises from the SN itself!

Kuncarayakti+15 measured too high V-band decay rate (1.55 mag / 100 d) than those for B-, R-bands (1.13, 1.32).

Fremling+ : similar evolution to SN 2011dh Ergon+15 : 2011dh \rightarrow LC flatten at ~450 d Binary Population and Spectral Synthesis (BPASS) code (http://bpass.auckland.ac.nz/) v2.0 (Eldridge+08, 13, 15)

•Resulting matching models : Fig. 2, HR diagram – possible binary progenitor models

Spectral Energy Distribution (SED)

Fig 3, Progenitor - Magnitudes expected from the BPASS models

For low- and high-extinction values

Observed magnitude error : ± 0.3 mag

Preferred progenitor – cooler helium giant

Mean Parameters for the progenitor and the companion

	Primary parameter	Value	Secondary parameter	Value	
$ m R_1 \sim 51.3 m R_{\odot}$	$\begin{array}{c} \hline M_{1,i}/\mathrm{M}_{\bigodot} \\ M_{1,f}\mathrm{M}_{\bigodot} \\ \log\left(L_{1}/\mathrm{L}_{\bigodot}\right) \\ \log\left(L_{1,\mathrm{eff}}/K\right) \\ \log\left(T_{1,\mathrm{eff}}/K\right) \\ \log\left(R_{1}/\mathrm{R}_{\bigodot}\right) \\ \hline M_{\mathrm{ejecta}}\mathrm{M}_{\bigodot} \\ M_{\mathrm{He}}\mathrm{M}_{\bigodot} \end{array}$	$\begin{array}{c} 11.0 \pm 1.2 \\ 2.4 \pm 0.4 \\ 4.6 \pm 0.1 \\ 4.06 \pm 0.04 \\ 1.71 \pm 0.04 \\ 0.95 \pm 0.4 \\ 0.6 \pm 0.2 \end{array}$	$\frac{M_{2,i}/\mathrm{M}_{\odot}}{M_{2,f}/\mathrm{M}_{\odot}}$ $\log (L_2/\mathrm{L}_{\odot})$ $\log (T_{2,\mathrm{eff}}/K)$ $\log (R_2/\mathrm{R}_{\odot})$	$5.8 \pm 2.9 \\ 5.0 \pm 4.5 \\ 1.1 \pm 2.9 \\ 4.0 \pm 0.4 \\ 0.4 \pm 0.3$	> not more massive than 20 $\rm M_{\odot}$
		System p	arameters		
P _i ∼79.4 d	$\log (P_i/d)$ Age/Myr	$ \begin{array}{r} 1.9 \pm 0.5 \\ 24 \pm 5 \end{array} $	$\frac{\log{(a_f/R_{\odot})}}{Z}$	$\begin{array}{c} 1.8 \pm 0.2 \\ 0.027 \pm 0.013 \end{array}$	

Table 2. Physical parameters of the binary progenitor models which matchthe observed constraints on the progenitor of iPTF13bvn.

Primary initial mass : $M_i \sim 10 - 12 M_{\odot}$ Secondary initial mass : $M_i \sim 5.8 M_{\odot}$ (otherwise, should be seen in the post-explosion images)

Evolution of an example progenitor

Long-term evolution

- In a sufficiently long observation → expected : late-time image of the companion as the SN should have faded below the companion mag
- (e.g.) 1000 d (=2yr 9mo) after the explosion
 → SN ~ 29.6 mag (M ~ -2.1)
 - \rightarrow companion : brightest at 27.7 mag (M ~ -4)

unless BH or NS

Date	Phase ^a (d)	<i>m</i> (<i>B</i> / <i>F</i> 438 <i>W</i>) (mag)	m(V/F555W) (mag))
2013/08/06	53.93	18.2	_	-
2013/09/10	88.84	_1	17.8	
2014/04/18	324	21.1	21.2	
Expected	740	26.0	28.0	
2015/06/26	740	26.5	26.3	
Expected	1001	29.6	29.7	~2016 March 16

Table 1. Photometry of iPTF13bvn.

Note. ^awith respect to the explosion date 2013 June 15.67, Cao et al. (2013)

Summary

- Post-explosion observations of SN Ib iPTF13bvn
- SN brightness at +740 d : below the level of the pre-explosion source
 → the progenitor has exploded → now disappeared!
- Late-time brightness
 → progenitor initial mass : 10 ≤ M ≤ 12 M_☉
 → companion star : M ≤ 10 M_☉
- Progenitor would have been a He-giant
- In a sufficiently long observation \rightarrow expected : late-time image of the companion

as the SN should have faded below the companion mag

- A suggestion that
 - if SNe Ibc progenitors are low-mass He-giants
- \rightarrow progenitors may be bright
- \rightarrow companions are also low-mass stars, and most likely faint/difficult to observe